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Abstract
The nervous system consist of the autonomous and peripheral. Peripheral nerve injury which occurs as a result of trauma, 

accident and other associated factors always results in a significant loss of sensory and motor functions in an individual. The injured 
nerves can be successfully restored although it requires a lot of complex cellular and molecular response in order to rebuild the 
functional axons. When this is achieved, the damaged nerve can accurately connect with their original targets. The complete recovery 
of PNI has not been optimized. Exogenous growth factors (GFs) is a new and emerging therapeutic strategy that can be used in nerve 
regeneration. The mechanism of action of growth factor is based on the ability to activate the downstream targets of various signaling 
cascades via binding to the individual receptors in order to exert the multiple effect and restore the neuron and tissue regeneration. 
Although the GFs are associated with short half-life and rapid deactivation in body fluids. The use of nerve conduits has been able to 
reduce the limitations. The nerve conduits have been good biocompatibility and biofunctionality properties.
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Introduction
Cellular signaling can be defined as perturbations of 

cellular homeostasis which causes cells to respond to different 
types of stimuli which could be in form of mechanical 
(mechanotransduction), electrical (electrotransduction) and 
chemical (chemotransduction) [1]. Cell signaling is a process that 
enables a cell to interact with itself, other surrounding cells and 
the host environment [1]. Three major components are involved 
in cell signaling. They include the: signal, receptor and effector 
[2]. Signaling could occur in different forms viz endocrine (long 
range communication), paracrine (short range), juxtacrine 
(contact-dependent signaling) and autocrine.

Growth factors are defined as a set of cell-produced proteins 
and polypeptides which have the ability to regulate cellular 

Cellular Signaling through the Use of Growth Factors and Mechanical Stimulus 
in Nerve Regeneration

proliferation and differentiation [3]. Growth factors that are 
soluble in nature can easily be incorporated directly into nerve 
conduits. They play a crucial role in supporting the numerous 
cell types that are involved in cell regeneration [4]. Examples of 
growth factors commonly used in nerve regeneration include [5]:

Nerve growth factors (NGFs)

Glial cell line-derived neurotrophic factor (GDNF)

Ciliary neurotrophic factor (CNTF)

Vascular endothelial growth factor (VEGF)

Neurotrophin -3 (NT-3)

Leukemia inhibitory factor (LIF)

Growth associated factor (GAP-43)
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Neurotrophin -4 (NT-4)

Fibroblast growth factor (FGF)

Platelet derived growth factor (PDGF)

Nerve growth factor (NGF): NGF was the first neurotrophic 
factor to be identified. It consist of three subunits: γ, β and 
α. Its main function is in the maintenance of basal forebrain 
cholinergic neurons, sympathetic neurons and nociceptive 
sensory neurons [6]. The mechanism of action is based on its 
ability to bind to tyrosine kinase receptor (trkA) which promotes 
the choline acetyltransferase expression and its effect on neuron 
differentiation and maintenance [7]. Nerve growth factors can 
be increased at the site of injury by insertion of Schwann cells 
into the nerve scaffolds [6]. The neurotrophic factor consist 
of structurally and functionally peptides that are related and 
they mediate potent survival and differentiation effects, both in 
central and peripheral nervous system [7]. Neurotrophins exist 
as noncovalent homodimers that are biologically active in nature 
[8,9]. Each molecule of the homodimer is made up of two pairs of 
antiparallel beta strands. Each of these beta strands is made up of 
highly flexible short loops [10]. The uniqueness of neurotropins 
is in their ability to bind to two classes of receptors which include 
the tropomysin receptor kinase (TRK) and the tumor necrosis 
factor (TNF) alpha family of P75 receptor. The P45 receptor has 
similar affinity whenever it binds to neurotrophins, while the 
tropomysin receptor kinase are more specific in their binding. 
Nerve growth factors bind to trkA and BDNF, while NT-4/5 

subsequently binds to trkB [11].

Neuropoetic cytokines: They belong to the family of 
pleiotropic glycoprotein molecules which play a major role in 
biological activities, induction of immune and inflammatory 
responses, regulation of hematopoiesis, control of cellular 
proliferation/differentiation and wound healing induction [12]. 
The main signal mechanism for neuropoetic cytokine family is 
carried out through recruiting the common signal transduction 
receptor subunit [13,14]. Gp130 is not directly activated by 
neuropoetic cytokines, but they bind to specific ligand-binding 
subunits. IL-6 binds to the IL-6 receptor, LIF binds to the LIF 
receptor (LIFR) and the CNTF binds to the CNTF receptor 
(CNTFR). 

Brain derived neurotrophic factor (BDNF): They are found 
majorly in the brain and periphery. Their major functions are in 
the promotion of the neuronal and synaptic growth, maintenance 
of existing neurons in the cortex and basal forebrain. Its 
mechanism of action is similar to that of NGF were they bind to 
the trkB receptor and form the BDNF-trkB complex [14]. 

The role of growth factors in nerve regeneration

The neurotrophic growth factors belong to the peptide family. 
Their basic role is to ensure the survival and differentiation of 
nerve fibers in both the central and peripheral nervous system 
[15,16].

Neurotrophins are molecules that are made up of non-
covalent homodimer beta chains [17]. They are separated from 
each other due to the composition of the binding sites. They play 
a major role in neurotrophic factors because they help to guide 
the exons in growth cone during regeneration [18].

Glial cell-lined derived neurotrophic factor (GDNF)

The GDNF family consist of GDNF, persephin (PSP), neurturin 
(NTN) and artemin (ART). The prominent member, GDNF helps 
in the survival of motor neurons, while NTN assists in the survival 
of sympathetic neurons [19]. They belong to the growth factor-β 
family of neurotrophic factors. There are two major parts of 
receptors associated with GDNF. They are the GFRα1 subunit and 
C-ret subunit. The former serves as the binding site, while the 
later participates in signaling [20].

Figure 1: Cellular signaling controls various aspects of multicellular life 
forms [2].

Figure 2: Main neurotrophic factors and their receptors used in nerve 
regeneration [16].
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Ciliary neurotrophic factor (CNTF)

It belongs to the family of interleukin-6. It is during an injury 
that the production of CNTF increases. The ligand binding of CNTF 
to the CNTF receptor-α (CNTFR) subunit triggers signals via the 
Janus kinase-signal transducers and activators of transcription 
pathway via the formation of a complex with the subunits of 
glycoprotein-130 [21,22].

Interactions between neurotrophic factors

There are differences that exist for both GDNF family and 
neuropoeitic cytokines in terms of receptor systems and related 
signal transduction pathways [23]. The neurotrophins and GDNF 
family are homodimeric and biologically active molecules, while 
neuropoeitic cytokines are long chain α-helix bundle proteins 
[24,25]. Damage to the axon leads to significant increase of BDNF 
mRNA within 8 hours [26], while in a healthy neuron, BDNF 
is under expressed, thus within the 7th day of injury, the BDNF 
level returns to normal. Following external damage, trkB mRNA 
increases on the second day, while on the 7th day, it reaches the 
peak. The content and localization of the axonal damage are two 
major factors that affect the neuropoeitic cytokine receptors 
[27]. After damage to the axon, cellular and molecular changes 
occur, and they are characterized by phagocytic processes [28]. 
Whenever an injury occurs at the axonal end, the expression of 
nerve growth factor (NGF) and brain derived neurotrophic factor 
(BDNF) increases in the distal part, while the expression of NT-3 
and NT-4 neurotrophin reduces [29]. In an intact nerve, the level 
of NGF mRNA is very low, while in a damaged axon, it increases to 
10 times in the distal part within the first 12 hours. After 72 hours 
post-injury, it decreases back to its normal level and remains like 
that for about three weeks [30-35]. In a damaged axon, the BDNF 
mRNA increases at the distal part, although the increase is slow 
when compared to that of NGF mRNA. Although GDNF has been 
detected in healthy nerve, in a damaged axon, it usually peaks 
in distal part after 7th day and remains like that for atleast two 
weeks [36].

Mechanical stimulus (mechanisms, biomaterials, types of 
stimulus and results)

Ultrasound: Ultrasound can serve two major functions: 
as a diagnostic and as a therapeutic tool. Ultrasound waves are 
known to generate mechanical energy which stimulates tissue 
regeneration [37]. The ultrasound wave can come in either 
continuous or pulsed. The low intensity pulsed ultrasound 
is preferable due to the fact that it involves low intensity of 
mechanical wave in a pulsatile manner, which results in reduction 
of heat generation [38]. The ultrasound stimulation that regulates 
intracellular signaling mechanism induction of fibroblasts by 
mechanical force leads to enhancement of collagen production 
and also provision of a structural support for axonal repair [38].

Extracorporeal shock wave (ESW)

The difference between extracorporeal shock wave (ESW) 
and ultrasound is that ESW applies a higher mechanical pressure 
that is about one thousand (1,000) times compared to that of 

ultrasound [39]. ESW has a lot of therapeutic applications, among 
them is in the repair of peripheral nerve injury.

Types of extracorporeal shock wave

a.	 Focused extracorporeal shock wave (FESW)

b.	 Radial extracorporeal shock wave (RESW)

Focused extracorporeal shock wave is applied in deep 
treatment areas that can reach up to 12 cm, while radial 
extracorporeal shock wave is applied to a depth of about 3-4 
cm [40]. Extracorporeal shock wave generates a mechanical 
stimulus that provokes two major physical effects which include 
mechanotransduction and cavitation. In peripheral nerve 
repair, mechanotransduction plays a major role by affecting 
the development of myelin gene regulation, Schwann cell 
differentiation and axonal regeneration [41].

Biomaterials for Peripheral Nerve Injury repair

In tissue engineering, any biomaterial used in nerve conduit 
production must possess some basic characteristics properties 
which include: biocompatibility, biodegradability, permeability, 
biochemical properties, flexibility and resistance to collapse and 
tension [42]. The biocompatibility property of a biomaterial is 
further subdivided into 3 [43,44]:

a.	 Blood compatibility: This talks about the ability of the 
biomaterial not to initiate hemolysis or coagulation in the 
human body

b.	 Histocompatibility: The biomaterial should not be able to 
induce side effects on the surrounding tissues.

c.	 Mechanical compatibility: The mechanical properties 
presented by the biomaterial must be similar to that of the 
host tissue.

Permeability is another important parameter that should 
be possessed by a conduit biomaterial. This is because it 
enhances cell viability and also promotes the exchange of gas, 
nutrients and waste materials [45]. According to Funakoshi et al; 
conduit permeability increases with pore size. Thus to facilitate 
nerve growth and repair, nerve conduits with large pores are 
preferable. In nerve regeneration, a semi-permeable conduit 
is more preferable when compared to both low permeable and 
impermeable conduits [46]. The nerve guide diameter has a lot of 
influence on the nerve regeneration outcome. This is because the 
proximal and distal stumps of the injured nerve has to match the 
nerve guide diameter [47]. The conduit wall thickness also has 
a major role to play in axonal growth. According to Naveilhan et 
al; conduit walls that are more than 0.8 mm thick reduces axonal 
growth which affects the permeability and porosity reduction 
which are important factors to consider in nerve regeneration 
[47]. Another important feature that affects nerve regeneration 
outcome is the wall thickness. It has a great influence on the 
conduit suturability. An idea conduit should be easy to suture, 
and it should be flexible enough to allow the needle to pass via 
the wall without the escape of the nerve stumps from the conduit 
lumen [48]. 



4/9

Citation: Andrew EC, et al. © (2024). Cellular Signaling through the Use of Growth Factors and Mechanical Stimulus in Nerve Regeneration. 
KP J Clin Med Case Rep. 2024; 3(1):1010

KP Journal of Clinical and Medical Case Reports

Natural based biomaterials

In nerve regeneration, a lot of natural-based biomaterials has 
been used. They include polysaccharides such as: hyaluronic acid, 
alginate, chitin and chitosan. Proteins such as: collagen, gelatin, 
silk fibroin, fibrin and keratin [49]

Polysaccharides

i.	 Hyaluronic acid (HA): It is composed of 
glycosaminoglycan moiety which is involved in regulation 
of different cellular processes [50]. Some unique properties 
associated with hyaluronic acid include: biocompatibility, support 
of axonal growth and its non-adhesive nature [51]. Although some 
of the limitations associated with HA which are: fast degradation 
and low mechanical properties, it can still be used as a conduit 
internal filler mostly in hydrogel form.

ii.	 Alginate: Alginate has a wild application in the 
biomedical field [52]. Chemical reactions is one major way that 
is used in the modification of alginate. When alginate is oxidized 
with sodium alginate, it gives rise to alginate dialdehyde [53]. 
One of the limitations associated with alginate use in promoting 
nerve regeneration is its weak mechanical resistance, thus it is 
advisable to use alginate in combination with other polymers in 
order for it to withstand the physiological loading conditions [54]. 
According to Pfister et al; he blended alginate with a biomaterial 
of natural origin-chitosan which gave rise to a support of nerve 
regeneration for short nerve gaps. Due to the hydrophilic nature of 
the chitosan, the blended mixture possessed a good permeability 
and adequate mechanical strength [55]. The techniques used 
in the manufacture of alginate include: magnetic templating, 
electrospinning, gas forming, emulsion freeze drying and 3D 
printing [56,57]. Alginate can also be used in nerve regeneration 
as a conduit internal filler for growth factor delivery [58].

iii.	 Chitin and chitosan: Chitin is a member of the 
glycosaminoglycan family with the presence of N-acetyl-D-
glucosamine moiety. The most abundant polysaccharide in nature 
is cellulose, followed by chitin. Its most abundant in nature is found 
in the exoskeleton of arthropods [59]. Chitin has a wide range of 
applications in the food industry, agriculture, pharmaceutics and 
medicine especially when used in its partial deacetylated form as 
chitosan [60,61]. There are some unique properties that make 
chitosan suitable to be used in peripheral nerve regeneration. 
They include its biocompatibility, ability to support axonal 
growth and tendency to reducing scar [62]. Although chitosan has 
low mechanical strength, it can be modified in order to improve 
its mechanical stability [63]. Other unique properties associated 
with chitosan include: its versatility and easy modification of the 
surface structure [64]. A study investigated nerve regeneration 
in rat sciatic nerves 3 months after 10 mm nerve repair with 
chitosan conduits that had three different deacetylation degrees 
[65].  At the end of the study, there was no significant differences 
among the experimental groups at functional, biomolecular and 
morphological levels [66]. Reaxon® a chitosan nerve conduit was 
commercialized in 2015. It was able to bridge nerve gaps up to 26 

mm due to some of its unique advantages such as transparency, 
flexibility and resistance to collapse [67].

Proteins

i.	 Collagen: Collagen is the most abundant protein in the 
human body, thus one of the main reasons it has been used over 
the years in nerve conduit repair [73]. According to Saltzman 
et al; 10 mm long hollow conduits reported better results in rat 
nerve regeneration and muscle re-innervation when compared 
to collagen polyglycolic acid (PGA) filed conduits. The limitations 
associated with the use of collagenase in nerve tissue repair 
is due to its low resistance to mechanical stress and weak 
manipulability [74]. It is recommended that collagen should be 
blended with other biomaterials like chitosan in order to increase 
its mechanical strength [75].

ii.	 Gelatin: The thermal denaturation of collagen results in 
the production of gelatin. The mechanical and physical properties 
of gelatin could be easily altered by using various cross-linking 

Method of 
Conduit 

Production
In Vitro Analysis Results References

Extrusion 
process, 

washing and 
hydrolysis

A short and long term 
analysis on the 10 mm rat 

sciatic nerve gap.

No in vivo toxicity. Short 
term: Higher number of 
activated Schwann cells 
in the distal segments 

of nerves.

[68]

Extrusion 
process

A 10 mm rat sciatic nerve 
gap that was repaired for 

3 months

No conduit detachment 
or collapse from the 

ultrasonography 
results.

[69]

Extrusion 
process, 

washing and 
hydrolysis

A short and long term 
analysis on the 15 mm rat 
sciatic nerve gap, muscle 

weight assessment

Higher muscle 
reinnervation 

in rats repaired 
with autograph in 
comparison with 
chitosan group. A 
larger and higher 

number of myelinated 
fibers was observed 
in the autograft in 

comparison to chitosan 
experimental group.

[70]

Freeze-cast 
process

A 12 weeks repair on a 10 
mm sciatic nerve gap with 
a porous chitosan conduit

Observational of an 
axonal outgrowth 
across the conduit

[71]

Mold-mandrel 
processing

Characterization of 
morphological and 

mechanical properties of 
chitosan conduit. Repair 

of 12 mm rat sciatic nerve 
gap with cell enriched 
chitosan conduit for 3 

months

After 3 months, the 
conduit became thinner 
although there was wall 

and lumen integrity.

[72]

Table 1. Relevant studies on chitosan based conduits
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agents [76]. One of the most common cross-linkers used was 
genipin, a natural substance with low cytotoxicity. According to 
Chen Y et al, he used a genipin cross-linked gelatin conduit to 
repair a 10 mm rat sciatic nerve for 8 weeks. The result obtained 
after 8 weeks, showed that most of the regenerated axons were 
not myelinated [76]. Proanthocyanidin was another cross linker 
that was used to stabilize a gelatin conduit. According to Liu et 
al; it was used to repair a 10 mm nerve gap and the regeneration 
was assessed 8 weeks after the repair. The biocompatibility and 
degradation rate of the conduit was tested. The in vivo studies 
after 8 weeks showed that the conduit was well integrated into 
the surrounding tissues [77]. Another natural cross linker used 
was bisvinylsulfomethyl. The result obtained after 8 weeks in a 
10 mm rat sciatic nerve defect showed that it reduced gelatin 
swelling and improved its mechanical properties [78].

Silk fibroin

Silk fibroin is used in biomedical applications due to some 
unique characteristics that it possesses. It contains repeated 
amino acidic sequence, thus having a very good mechanical 
properties. It is also easily degradable [82]. Mature silk has been 
shown to possess good tensile and mechanical properties to 
conduits, when compared to conduits produced with only fibroin 
solution. The silk fibrin could easily be blended using different 
biomaterials to reach the target mechanical strength [83].

Fibrin

 It is used in scaffold tissue engineering due to its unique 
properties which include high biocompatibility, versatility, high 
dissolving and coagulating properties which can be modified [84, 
85]. According to Kalbarmathen et al; he demonstrated the effect 
in rat sciatic nerve regeneration of a conduit that was made by 
fibrin glue to repair 10 mm defects. The result obtained indicated 
that the fibrin glue demonstrated a better axon regeneration 
length in comparison PHB conduits 2 weeks after the repair [85].

Keratin

It has some unique characteristics that makes it useful as a 
biomaterial. They include its biocompatibility, biodegradability, 
bioactivity and its hydrophilic surface. Although it has some 
limitations such as poor physical and mechanical properties, it 
can be improved by using various cross-linking agents [86]. When 
keratin is used as a hydrogel-filler for conduits in mice, it has 
proven to be effective in promoting nerve regeneration in short 
gaps of 5-15 mm [87]. Gupta and Najak used keratin as a protein 
source for scaffold fabrication. The results obtained showed that 
they produced a keratin-alginate scaffold [88].

Polyesters

A polyester is a biopolymer that is naturally biodegradable. 
The most commonly used type in tissue engineering is 
polyhydroxyalkanoates (PHA). Some advantages associated 
with PHA include pH stability and biocompatibility. One of the 
limitations of its use is high cost, although it could be reduced 
to the barest minimum by the development of recombinant 
microorganisms [89].

Conclusion
Overtime, there has been an advancement on the 

comprehension of peripherous nervous injury, although there 
is still room for improvement. With growing research on other 
growth factors, they hold a great promise as a tool for studying 
intracellular communication among cells.
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Genepin cross-linked gelatin 
solution poured into a mandrel

A non-porous and porous genepin cross-linked 
gelatin conduit were compared and used to repair a 

10 mm rat sciatic nerve.
Microscopic observation and characterization of the 

conduit

A faster degradation and lower mechanical 
strength was recorded in the porous gelatin 

conduit.
There was a significant higher nerve conductive 

velocity in rats that were repaired with the 
porous conduit

[79]

Proanthocyanidin cross-linked 
gelatin solution

In-vitro enzymatic degradation and biocompatibility 
assay. A 10 mm rat sciatic nerve defect was used to 

repair the proanthocyanidin cross-linked gelatin 
conduit for 8 weeks

Conduit has resistance to degradation by 
digestive enzymes. Schwann cell adhesion 
and growth was supported by gelatin and 

proanthocyanidin release

[80]

Photo fabrication of the gelatin 
conduit

10 mm rat sciatic nerve gap was repaired with 
gelatin conduit for 12 months

At 12 weeks, the gelatin conduit was degraded 
and absorbed with no signs of any inflammatory 

reactions
[81]

Table 2. Relevant studies on protein based conduits
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